复杂岩体中锆石的成因判识及其对锆石U-Pb年龄的影响:以辽河坳陷太古宇基底中的锆石为例

陈道公, 李彬贤, 夏群科等. 2001. 变质岩中锆石U-Pb计时问题评述——兼论大别造山带锆石定年. 岩石学报, 17(1): 129-138.

https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101012.htm

Chen Daogong, Li Binxian, Xia Qunke et al. 2001. An evaluation of zircon U-Pb dating for metamorphic rocks and comments on zircon ages of Dabie orogen. Acta Petrologica Sinica, 17(1): 129-138.

https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101012.htm

陈国超, 张晓飞, 裴先治等. 2023. 东秦岭东段五垛山花岗岩基白草垛花岗伟晶岩微量元素富集型锆石特征及岩浆热液过程. 地质学报, 97(3): 688-704. doi: 10.3969/j.issn.0001-5717.2023.03.004

Chen Guochao, Zhang Xiaofei, Pei Xianzhi et al. 2023. Trace element enriched zircon and magmatic hydrothermal process of Baicaoduo granitic pegmatite in Wuduoshan batholith in the eastern part of East Qinling. Acta Geologica Sinica, 97(3): 688-704. doi: 10.3969/j.issn.0001-5717.2023.03.004

程裕淇, 刘敦一, I S Williams等. 2000. 大别山碧溪岭深色榴辉岩和含石榴石片麻状花岗质岩石SHRIMP分析——晋宁期高压—超高压变质作用的同位素年代学证据. 地质学报, 74(3): 193-205.

https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200003000.htm

Cheng Yuqi, Liu Dunyi, I S Williams et al. 2000. SHRIMP U-Pb dating of zircons of a dark-coloured eclogite and a garnet-bearing gneissic-granitic rock from Bixiling, eastern Dabie area: Isotope chronological evidence of Neoproterozoic HP-UHP metamorphism. Acta Geologica Sinica, 74(3): 193-205.

https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200003000.htm

范晨子, 胡明月, 赵令浩等. 2012. 锆石铀—铅定年激光剥蚀—电感耦合等离子体质谱原位微区分析进展. 岩矿测试, 31(1): 29-46.

https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201201007.htm

Fan Chenzi, Hu Mingyue, Zhao Linghao et al. 2012. Advances in in situ microanalysis of U-Pb zircon geochronology using laser ablation-inductively coupled plasma-mass spectrometry. Rock and Mineral Analysis, 31(1): 29-46.

https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201201007.htm

胡彩霞, 袁万明. 2021. 不同成因类型的锆石特征及年代学意义. 中国矿业, 30(增刊1): 204-207.

https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2021S1047.htm

Hu Caixia and Yuan Wanming. 2021. Zircon characteristics of different genetic types and their geochronological significance. China Mining Magazine, 30(suppl. 1): 204-207.

https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2021S1047.htm

简平, 程裕淇, 刘敦一. 2001. 变质锆石成因的岩相学研究——高级变质岩U-Pb年龄解释的基本依据. 地学前缘, 8(3): 183-191.

https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200103031.htm

Jian Ping, Cheng Yuqi and Liu Dunyi. 2001. Petrographical study of metamorphic zircon: Basic roles in interpretation of U-Pb age of high grade metamorphic rocks. Earth Science Frontiers, 8(3): 183-191.

https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200103031.htm

雷玮琰, 施光海, 刘迎新. 2013. 不同成因锆石的微量元素特征研究进展. 地学前缘, 20(4): 273-284.

https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304028.htm

Lei Weiyan, Shi Guanghai and Liu Yingxin. 2013. Research progress on trace element characteristics of zircons of different origins. Earth Science Frontiers, 20(4): 273-284.

https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201304028.htm

李长民. 2009. 锆石成因矿物学与锆石微区定年综述. 地质调查与研究, 32(3): 161-174.

https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200903004.htm

Li Changmin. 2009. A review on the minerageny and situ microanalytical dating techniques of zircons. Geological Survey and Research, 32(3): 161-174.

https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200903004.htm

李长民, 邓晋福, 苏尚国等. 2010. 河北省东坪金矿钾质蚀变岩中的两期锆石年代学研究及意义. 地球学报, 31(6): 843-852.

https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201006014.htm

Li Changmin, Deng Jinfu, Su Shangguo et al. 2010. Two stage zircon U-Pb ages of the potash altered rock in the Dongping gold deposit, Hebei Province, and their geological implications. Acta Geoscientica Sinica, 31(6): 843-852.

https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201006014.htm

李灵慧, 周奇明, 赵志丹等. 2016. 不同类型岩浆岩中锆石环带特征研究. 矿产与地质, 30(2): 289-293.

https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201602026.htm

Li Linghui, Zhou Qiming, Zhao Zhidan et al. 2016. Characteristics of zircon annulus in different types of magmatic rocks. Mineral Resources and Geology, 30(2): 289-293.

https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201602026.htm

李献华, 柳小明, 刘勇胜等. 2015. LA-ICPMS锆石U-Pb定年的准确度: 多实验室对比分析. 中国科学: 地球科学, 45(9): 1294-1303.

https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509004.htm

Li Xianhua, Liu Xiaoming, Liu Yongshen et al. 2015. Accuracy of LA-ICPMS zircon U-Pb age determination: An inter-laboratory comparison. Science China: Earth Sciences, 45(9): 1294-1303.

https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509004.htm

林春明, 黄舒雅, 江凯禧等. 2023. 辽河坳陷大民屯凹陷古近系沙河街组三段沉积相. 地质学报, 97(6): 2002-2025.

https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202306017.htm

Lin Chunming, Huang Shuya, Jiang Kaixi et al. 2023. Sedimentary facies of the third member of Pleoagene Sahehjie Formation from the Damintun Sag, Liaohe Depression. Acta Geologica Sinica, 97(6): 2002-2025.

https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202306017.htm

林清茶, 夏斌, 张玉泉等. 2005. 云南鸡街超基性碱性岩锆石类型及其年龄值意义. 大地构造与成矿学, 29(4): 512-516.

https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200504011.htm

Lin Qingcha, Xia Bin, Zhang Yuquan et al. 2004. The types of zircon and the geological implication of dating zircons from Jijie ultra basic alkali-rocks in Yunnan. Geotectonica et Metallogenia, 29(4): 512-516.

刘建辉, 刘敦一, 张玉海等. 2011. 使用SHRIMP测定锆石铀—铅年龄的选点技巧. 岩矿测试, 30(3): 265-268.

Liu Jianhui, Liu Dunyi, Zhang Yuhai et al. 2011. Techniques for choosing target points during SHRIMP dating of zircon U-Pb ages. Rock and Mineral Analysis, 30(3): 265-268.

刘平华, 刘福来, 王舫等. 2011. 山东半岛高压麻粒岩中锆石的U-Pb定年及其地质意义. 地学前缘, 18(2): 33-54.

https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102007.htm

Liu Pinghua, Liu Fulai, Wang Fang et al. 2011. In-situ U-Pb dating of zircons from high-pressure granulites in Shandong Peninsula, eastern China and its geological significance. Earth Science Frontiers, 18(2): 33-54.

https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102007.htm

沈其韩, 宋彪, 徐惠芬等. 2004. 山东沂水太古宙蔡峪和大山岩体SHRIMP锆石年代学. 地质论评, 50(3): 275-284.

https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200403012.htm

Shen Qihan, Song Biao, Xu Huifen et al. 2004. Emplacement and metamorphism ages of the Caiyu and Dashan igneous bodies, Yishui County, Shandong Province: Zircon SHRIMP chronology. Geological Review, 50(3): 275-284.

https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200403012.htm

宋柏荣, 胡英杰, 边少之等. 2011. 辽河坳陷兴隆台潜山结晶基岩油气储层特征. 石油学报, 32(1): 77-82.

https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201101012.htm

Song Bairong, Hu Yingjie, Bian Shaozhi et al. 2011. Reservoir characteristics of the crystal basement in the Xinglongtai buried-hill, Liaohe Depression. Acta Petrolei Sinica, 32(1): 77-82.

https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201101012.htm

宋柏荣, 施玉华, 刘玉婷等. 2017. 辽河坳陷结晶基底岩性特征、含油性及测井识别. 地质论评, 63(2): 427-440.

https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201702016.htm

Song Bairong, Shi Yuhua, Liu Yuting et al. 2017. Lithological characteristics, oil-bearing property and logging identification of the crystalline basement of Liaohe Depression. Geological Review, 63(2): 427-440.

https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201702016.htm

唐俊华, 顾连兴, 张遵忠等. 2007. 东天山咸水泉片麻状花岗岩特征、年龄及成因. 岩石学报, 23(8): 1803-1820.

https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708002.htm

Tang Junhua, Gu Lianxing, Zhang Zunzhong et al. 2007. Characteristics, age and origin of the Xianshuiquan gneissose granite in eastern Tianshan. Acta Petrologica Sinica, 23(8): 1803-1820.

https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708002.htm

佟鑫, 王惠初, 张永. 2023. 华北克拉通新太古代末期的克拉通化: 冀东昌黎碱性花岗质岩石的岩石学、锆石年代学和元素地球化学. 岩石学报, 39(9): 2598-2618.

https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202309005.htm

Tong Xin, Wang Huichu and Zhang Yong. 2023. Neoarchean cratonization of the North China Craton: Petrology, zircon chronology and elemental geochemistry of the Changli alkaline granitoids in eastern Hebei, North China. Acta Petrologica Sinica, 39(9): 2598-2618.

https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202309005.htm

万渝生, 刘敦一, 王世炎等. 2009. 登封地区早前寒武纪地壳演化—地球化学和锆石SHRIMP U-Pb年代学制约. 地质学报, 83(7): 982-999.

https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200907008.htm

Wan Yusheng, Liu Dunyi, Wang Shiyan et al. 2009. Early Precambrian crustal evolution in the Dengfeng area: Constraints from geochemistry and SHRIMP U-Pb zircon dating. Acta Geologica Sinica, 83(7): 982-999.

https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200907008.htm

万渝生, 刘敦一, 董春艳等. 2011. 高级变质作用对锆石U-Pb同位素体系的影响: 胶东栖霞地区变质闪长岩锆石定年. 地学前缘, 18(2): 17-25.

https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102005.htm

Wan Yusheng, Liu Dunyi, Dong Chunyan et al. 2011. The impact of high-grade metamorphism on the U-Th-Pb system of zircons: A case study of zircon dating of meta-diorite in Qixia area, eastern Shandong. Earth Science Frontiers, 18(2): 17-25.

https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102005.htm

王德英, 王清斌, 刘晓健等. 2019. 渤海湾盆地海域片麻岩潜山风化壳型储层特征及发育模式. 岩石学报, 35(4): 1181-1193.

https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201904013.htm

Wang Deying, Wang Qingbin, Liu Xiaojian et al. 2019. Characteristics and developing patterns of gneiss buried hill weathering crust reservoir in the sea area of the Bohai Bay Basin. Acta Petrologica Sinica, 35(4): 1181-1193.

https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201904013.htm

吴佳, 巫建华, 刘晓东等. 2023. 铀矿区花岗岩锆石定年的"高铀效应": 来自鲁溪和下庄花岗岩SHRIMP锆石U-Pb年龄的启示. 大地构造与成矿学, 47(2): 449-460.

https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202302012.htm

Wu Jia, Wu Jianhua, Liu Xiaodong et al. 2023. "High-uranium effect" on zircon U-Pb dating of ore-related granites in the uranium ore district: Evidence from zircon SHRIMP U-Pb geochronology of the Luxi and Xiazhuang granites. Geotectonica et Metallogenia, 47(2): 449-460.

https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202302012.htm

吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604.

https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm

Wu Yuanbao and Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589-1604.

https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm

吴元伟, 周广法, 曾现虎. 2013. 变质锆石成因类型及内部结构、地球化学特征. 科技创新与应用, (26): 128-128.

https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201326121.htm

Wu Yuanwei, Zhou Guangfa and Zeng Xianhu. 2013. The genesis type, internal structure, and geochemical characteristics of metamorphic zircon. Technology Innovation and Application, (26): 128-128.

https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201326121.htm

肖玲玲, 刘福来, 张健. 2019. 华北克拉通新太古代早期构造热事件的响应: 来自左权地区ca. 2.7 Ga TTG片麻岩的证据. 岩石学报, 35(2): 325-348.

https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201904001.htm

Xiao Lingling, Liu Fulai and Zhang Jian. 2019. Response to the Early Neoarchean tectono-thermal events in the North China Craton: Evidence of ca. 2.7 Ga TTG gneisses from the Zuoquan metamorphic complex. Acta Petrologica Sinica, 35(2): 325-348.

https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201904001.htm

肖玲玲, 牛路伟, 王国栋. 2021. 吕梁界河口群变质岩石的构造指示: 来自地球化学和同位素年代学的证据. 岩石学报, 37(4): 1015-1043.

https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202104005.htm

Xiao Lingling, Niu Luwei and Wang Guodong. 2021. Geochemistry, geochronology and its geological implication of metamorphic rocks of the Jiehekou Group in the Lüliang complex. Acta Petrologica Sinica, 37(4): 1015-1043.

https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202104005.htm

肖琴, 易睿, 张婷婷等. 2021. 锆石的成因类型及其地质应用. 内蒙古科技与经济, (15): 82-83+85.

https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ202115033.htm

Xiao Qin, Yi Rui, Zhang Tingting et al. 2021. Types of zircon genesis and their geological applications. Inner Mongolia Science Technology and Economy, (15): 82-83+85.

https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ202115033.htm

邢志贵. 2006. 辽河坳陷太古宇变质岩储层研究. 北京: 石油工业出版社. 1-149.

Xing Zhigui. 2006. Reservoir Research of Archaeozoic Metamorphic Rock in Liaohe Depression. Beijing: Petroleum Industry Press. 1-149.

张妮, 武毅, 张霞等. 2021. 辽河坳陷大民屯凹陷古近系沙河街组三段地球化学特征及其地质意义. 地质学报, 95(2): 517-535.

https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102016.htm

Zhang Ni, Wu Yi, Zhang Xia et al. 2021. Geochemical characteristics and its implications of the third member of Paleogene Shahejie Formation from the Damintun Sag, Liaohe Depression. Acta Geologica Sinica, 95(2): 517-535.

https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102016.htm

张伟, 周夏青, 孙聪聪等. 2019. 矿物微区原位分析与同位素地球化学分析技术在地学中的应用. 山东国土资源, 35(10): 38-44.

https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201910006.htm

Zhang Wei, Zhou Xiaqing, Sun Congcong et al. 2019. Application of in-situ mineral microanalysis technology and isotope geochemical analysis technology in geology. Shandong Land and Resources, 35(10): 38-44.

https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI201910006.htm

赵志丹, 刘栋, 王青等. 2018. 锆石微量元素及其揭示的深部过程. 地学前缘, 25(6): 124-135.

Zhao Zhidan, Liu Dong, Wang Qing et al. 2018. Zircon trace elements and their use in probing deep processes. Earth Science Frontiers, 25(6): 124-135.

赵子福, 郑永飞, 戴立群. 2013. 大陆碰撞造山带花岗岩中继承锆石成因与岩浆源区性质. 科学通报, 58(23): 2285-2289.

https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201323008.htm

Zhao Zifu, Zheng Yongfei and Dai Liqun. 2013. The genesis and magmatic source area properties of inherited zircon of granites in continental collision orogenic belt. Chinese Science Bulletin, 58(23): 2285-2289.

https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201323008.htm

Ayers J C and Peters T J. 2018. Zircon/fluid trace element partition coefficients measured by recrystallization of mud tank zircon at 1.5 GPa and 800-1000 ℃. Geochimica et Cosmochimica Acta, 223: 60-74. DOI: 10.1016/j.gca.2017.11.025.

Belousova E, Griffin W, O'Reilly S Y O et al. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143: 602-622. DOI: 10.1007/s00410-002-0364-7.

Chen R X, Zheng Y F and Xie L W. 2010. Metamorphic growth and recrystallization of zircon: Distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos, 114(1-2): 132-154. DOI: 10.1016/j.lithos.2009.08.006.

Claiborne L L, Miller C F and Wooden J L. 2010. Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160: 511-531. DOI: 10.1007/s00410-010-0491-5.

Corfu F, Hachar J M, Hoskin P W O et al. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. DOI: 10.2113/0530469.

Deng C Z, Sun G Y, Sun D Y et al. 2019. Morphology, trace elements, and geochronology of zircons from monzogranite in the Northeast Xing'an block, northeastern China: Constraints on the genesis of the host magma. Mineralogy and Petrology, 113: 651-666. DOI: 10.1007/s00710-019-00669-9.

Finch R J and Hanchar J M. 2003. Structure and chemistry of zircon and zircon-group minerals. Reviews in Mineralogy and Geochemistry, 53(1): 1-25. DOI: 10.2113/0530001.

Geng Y S, Liu F L and Yang C H. 2006. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication. Acta Geologica Sinica, 80(6): 819-833. DOI: 10.1111/j.1755-6724.2006.tb00305.x.

Gerdes A and Zeh A. 2009. Zircon formation versus zircon alteration: New insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the central zone of the Limpopo belt. Chemical Geology, 261(3-4): 230-243. DOI: 10.1016/j.chemgeo.2008.03.005.

Grant M L, Wilde S A, Wu F Y et al. 2009. The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chemical Geology, 261(1-2): 155-171. DOI: 10.1016/j.chemgeo.2008.11.002.

Gray A L. 1985. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst, 110(5): 551-556. DOI: 10.1039/AN9851000547.

Grimes C B, Wooden J L, Cheadle M J et al. 2015. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170: 46. DOI: 10.1007/s00410-015-1199-3.

Harley S L and Kelly N M. 2007a. Zircon tiny but timely. Elements, 3(1): 13-18. DOI: 10.2113/gselements.3.1.13.

Harley S L, Kelly N M and Möller A. 2007b. Zircon behaviour and the thermal histories of mountain chains. Elements, 3(1): 25-30. DOI: 10.2113/gselements.3.1.25.

Hermann J, Rubatto D, Korsakov A et al. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141: 66-82. DOI: 10.1007/s004100000218.

Hoskin P W O and Black L P. 2000a. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439. DOI: 10.1046/j.1525-1314.2000.00266.x.

Hoskin P W O, Kinny P D, Wyborn D et al. 2000b. Identifying accessory mineral saturation during differentiation in granitoid magmas: An integrated approach. Journal of Petrology, 41(9): 1365-1396. DOI: 10.1093/petrology/41.9.1365.

Hoskin P W O. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. DOI: 10.1016/j.gca.2004.07.006.

Lawrie K C, Mernagh T P, Ryan C G et al. 2007. Chemical fingerprinting of hydrothermal zircons: An example from the Gidginbung high sulphidation Au-Ag-(Cu) deposit, New South Wales, Australia. Proceedings of the Geologists' Association, 118(1): 37-46. DOI: 10.1016/S0016-7878(07)80045-9.

Li H, Watanabe K and Yonezu K. 2014. Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, South China: Implications for the magmatic evolution and mineralization processes. Ore Geology Reviews, 60: 14-35. DOI: 10.1016/j.oregeorev.2013.12.009.

Liati A and Gebauer D. 1999. Constraining the prograde and retrograde P-T-t path of Eocene HP-rocks by SHRIMP dating of different zircon domains: Inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contributions to Mineralogy and Petrology, 135: 340-354. DOI: 10.1007/s004100050516.

Meng F C, Tian Y L, Kerr A C et al. 2022. Neoarchean reworking of Mesoarchean and Paleoarchean crust (3.4~3.0 Ga) within the North China Craton: Constraints from zircon U-Pb geochronology and Lu-Hf isotopes from the basement of the Bohai Bay Basin. Precambrian Research, 369: 106497. DOI: 10.1016/j.precamres.2021.106497.

Mikulski S Z, Williams I S, Stein H J et al. 2020. Zircon U-Pb dating of magmatism and mineralizing hydrothermal activity in the Variscan Karkonosze massif and its eastern metamorphic cover (SW Poland). Minerals, 10(9): 787. DOI: 10.3390/min10090787.

Nutman A P, Wan Y S, Du L L et al. 2011. Multistage Late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Research, 189(1-2): 43-65. DOI: 10.1016/j.precamres.2011.04.005.

Park C, Song Y, Chung D et al. 2016. Recrystallization and hydrothermal growth of high U-Th zircon in the Weondong deposit, Korea: Record of post-magmatic alteration. Lithos, 260: 268-285. DOI: 10.1016/j.lithos.2016.05.026.

Pettke T, Audétat A, Schaltegger U et al. 2005. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole granite (NSW, Australia): Part Ⅱ: Evolving zircon and thorite trace element chemistry. Chemical Geology, 220(3-4): 191-213. DOI: 10.1016/j.chemgeo.2005.02.017.

Pidgeon R T. 1992. Recrystallisation of oscillatory zoned zircon: Some geochronological and petrological implications. Contributions to Mineralogy and Petrology, 110: 463-472. DOI: 10.1007/BF00344081.

Roberts N M W, Yang Q Y and Santosh M. 2018. Rapid oxygen diffusion during high temperature alteration of zircon. Scientific Reports, 8: 3661. DOI: 10.1038/s41598-018-22016-2.

Rubatto D and Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the western Alps. // Pagel M, Barbin V, Blanc P et al. Cathodoluminescence in Geosciences. Berlin, Heidelberg: Springer-Verlag. 373-400. DOI: 10.1007/978-3-662-04086-7_15.

Rubatto D, Williams I S and Buick I S. 2001. Zircon and monazite response to prograde metamorphism in the Reynolds range, central Australia. Contributions to Mineralogy and Petrology, 140: 458-468. DOI: 10.1007/PL00007673.

Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138. DOI: 10.1016/S0009-2541(01)00355-2.

Rubatto D and Hermann J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, western Alps): Implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67(12): 2173-2187. DOI: 10.1016/S0016-7037(02)01321-2.

Rubatto D. 2017. Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83(1): 261-295. DOI: 10.2138/rmg.2017.83.9.

Schaltegger U, Pettke T, Audétat A et al. 2005. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole granite (NSW, Australia): Part Ⅰ: Crystallization of zircon and REE-phosphates over three million years: A geochemical and U-Pb geochronological study. Chemical Geology, 220(3-4): 215-235. DOI: 10.1016/j.chemgeo.2005.02.018.

Sheikh L, Lutfi W, Zhao Z D et al. 2020. Geochronology, trace elements and Hf isotopic geochemistry of zircons from Swat orthogneisses, northern Pakistan. Open Geosciences, 12(1): 148-162. DOI: 10.1515/geo-2020-0109.

Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. // Saunders A D and Norry M J. Magmatism in the Ocean Basins. Geological Society London, Special Publication No. 42. Oxford, London: Blackwell. 313-345.

Taylor R J M, Kirkland C L and Clark C. 2016. Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes. Lithos, 264: 239-257. DOI: 10.1016/j.lithos.2016.09.004.

Takehara M, Horie K, Hokada T et al. 2018. New insight into disturbance of U-Pb and trace-element systems in hydrothermally altered zircon via SHRIMP analyses of zircon from the Duluth gabbro. Chemical Geology, 484: 168-178. DOI: 10.1016/j.chemgeo.2018.01.028.

Tomaschek F, Kennedy A K, Villa I M et al. 2003. Zircons from Syros, Cyclades, Greece: Recrystallization and mobilization of zircon during high-pressure metamorphism. Journal of Petrology, 44(11): 1977-2002. DOI: 10.1093/petrology/egg067.

Trail D, Watson E B and Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, 97: 70-87. DOI: 10.1016/j.gca.2012.08.032.

Vavra G, Gebauer D, Schmid R et al. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea zone (southern Alps): An ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology, 122: 337-358. DOI: 10.1007/s004100050132.

Wan Y S, Xu Z Y, Dong C Y et al. 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85 Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Research, 224: 71-93. DOI: 10.1016/j.precamres.2012.09.014.

Wan Y S, Zhao X Z, Wang Z J et al. 2014. SHRIMP zircon dating and LA-ICPMS Hf analysis of Early Precambrian rocks from drill holes into the basement beneath the central Hebei Basin, North China Craton. Geoscience Frontiers, 5(4): 471-484. DOI: 10.1016/j.gsf.2014.02.007.

Watson E B and Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308(5723): 841-844. DOI: 10.1126/science.1110873.

Xiao L L and Chen M H. 2019. Metamorphic age comparison and its implications between the Zuoquan and Zanhuang complexes in the central North China Craton, based on LA-ICP-MS zircon U-Pb dating. Minerals, 9(12): 780. DOI: 10.3390/min9120780.

Back to top: